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Abstract

An elastic±perfectly plastic circular disk, with rigid circular inclusion of the radius a, subjected to simultaneous
uniform radial tension and in-plane torsion is considered. External radius of the disk is assumed to be in®nitely

large, just to simplify the boundary conditions. Limit load-carrying capacity of such a disk cannot be reached, it is
preceded by decohesive carrying capacity (DCC), de®ned by in®nitely large radial strains er. They attain their upper
bound for r � a; then the shearing strains gry at r � a increase in®nitely as well. In contradistinction to the limit

carrying capacity, the decohesive carrying capacity depends essentially on Poisson's ratio v. Interaction curves
corresponding to DCC are shown in the plane of external loadings. A comparison with the condition of
discontinuous bifurcation under uniform stresses and strains is given, and full agreement is found, though in the

case under consideration the state of stress is evidently non-uniform. Diagrams of stress and strain distribution at
the moment of decohesion are also presented. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Usually decohesion in plasticity is considered as a separate phenomenon described by various physical

criteria. In real material diverse forms of decohesion may take place, either as a result of void initiation

and growth, or as a result of crack initiation and propagation, or without any of these phenomena. A

comparison of various physical criteria of decohesion was given e.g. by ZÇyczkowski (1981), Clift et al.

(1990), and Needleman (1994). In the paper by Clift et al. (1990) the authors stated that a limited value

of unit plastic work is in the best agreement with experimental results. Plastic strains are then limited as

well.

But even if we assume the idealized elastic±perfectly plastic material without any limitation of plastic

strains, then decohesion may occur as a result of local in®nite increase of strains or other forms of
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termination of continuous solutions and formation of inadmissible discontinuities. The corresponding
loading parameter was called by Szuwalski and ZÇyczkowski (1973) the `decohesive carrying capacity'
(DCC). This `mathematical' criterion of decohesion may be regarded as an upper bound to all physical
criteria of decohesion, since none of them admits in®nitely large strains. Many papers devoted to DCC
were reviewed by Szuwalski (1990). From among more recent papers on this topic we mention that by
ZÇyczkowski and Tran (1997), devoted to a cylindrical shell under combined loading.

In order to ensure internal consistency of the above-mentioned criterion of decohesion, connected
with in®nite increase of normal strains, like @u=@x41, one should employ a ®nite-strain theory. Such
an approach was used by ZÇyczkowski and Szuwalski (1982), Skrzypek and ZÇyczkowski (1983),
Szuwalski and ZÇyczkowski (1984), ZÇyczkowski et al. (1992). The relevant analysis, much more
complicated, changes the criterion of decohesion from @u=@x41 to the type @s=@x41, but for
positive stresses and strains numerical values of DCC remain almost without change.

Parallelly, or even earlier, elastic±plastic processes leading to discontinuities in velocities across a
certain characteristic surface were studied. It was shown by Hill (1958), Rudnicki and Rice (1975), Rice
(1976), that this phenomenon may be described as a type of loss of material stability and simultaneously
as the loss of ellipticity of governing di�erential equations, namely formation of discontinuities is due to
bifurcation of equilibrium states. A shorter, though not quite precise name `discontinuous bifurcation' is
now in common use. Ottosen and Runesson (1991), Neilsen and Schreyer (1993) discussed properties of
discontinuous bifurcation solutions for an elastic±plastic body by means of spectral analysis in general
three-dimensional case; Runesson et al. (1991) analyzed in detail plane stress and plane strain states.
ZÇyczkowski (1999) performed a similar analysis for the BurzynÂ ski±Torre paraboloidal yield condition.
The states of stress and strain were assumed to be uniform (homogeneous) and direction of
discontinuity was found by maximization of the hardening modulus with respect to directional cosines.

Discontinuous bifurcations are directly connected with the decohesion phenomena. This was
mentioned by Thomas (1957, 1961), and considered in detail by Schreyer and Zhou (1995). They noticed
that at discontinuous bifurcation there exists a situation on the verge of loss of compatibility leading to
decohesion. Then either a sudden decohesion takes place, as assumed by Szuwalski and ZÇyczkowski
(1973), or a certain postcritical analysis is possible if one introduces a certain relation between the
traction force across the discontinuity line and displacement jump, Needleman (1987), MroÂ z and
Kowalczyk (1989), Skrzypek (1993). Usually the loading parameter in postcritical states decreases, and
hence the term `decohesive carrying capacity' for the loading corresponding to discontinuous bifurcation
is justi®ed. More essential di�erences may be due to non-uniformity of the stress state, since then the
surface or line of discontinuity may be a priori prescribed (for example by the line of local maxima or
suprema of strain intensity or of another appropriate strain or stress invariant) and not subject to
evaluation as it is usual in the theory of discontinuous bifurcations. Various attempts to admit the
solutions showing some kinds of discontinuities are connected mainly with variational approach; we
mention here the papers by Temam and Strang (1980), Anzellotti and Giaquinta (1980, 1982), Seregin
(1985), and Repin (1991, 1994).

Until now, all the papers devoted to decohesive carrying capacity were restricted to normal stresses
only, it means to the cases of principal stresses and known principal directions. In the present paper we
consider a disk with rigid circular inclusion (for example a rigid shaft perpendicular to the disk),
subjected to simultaneous radial tension and in-plane torsion. The external radius of the disk is assumed
to tend to in®nity; such an assumption simpli®es essentially the boundary conditions but does not
introduce major qualitative changes when comparing to a disk with ®nite external radius. Szuwalski
(1979) analyzed that problem for pure radial tension. Pure in-plane torsion was analyzed by Seregin
(1984), and Repin (1994); they found collapse due to tangential slip. The main purpose of the present
paper is to construct the interaction curves corresponding to DCC for the combined case under
consideration and to compare the criterion of decohesion with that derived by Runesson et al. (1991) for
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discontinuous bifurcation in this case. In view of non-homogeneous state of stress these criteria might be

di�erent; however, it will be shown that in the case under consideration they coincide.

Basic assumptions of the paper are as follows:

1. The material is elastic±perfectly plastic with Young's modulus E and yield-point stress in uniaxial

tension s0, with elastic compressibility described by Poisson's ratio v, subject to the Huber±Mises±

Hencky (HMH) yield condition.

2. The analysis is restricted to small strains.

3. The Hencky±Ilyushin deformation theory is employed (similarity of stress and strain deviators); for

proportionally increasing external loadings it may be regarded as justi®ed. The Prandtl-Reuss theory

would essentially complicate the calculations, butÐin view of a comparison performed by Szuwalski

and ZÇyczkowski (1973) for pure tensionÐonly minor changes in results may be expected.

4. The disk of in®nite dimensions has a rigid immovable circular inclusion of radius a and is subjected

Fig. 1. Disk with rigid inclusion under radial tension and in-plane torsion.
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to radial tension p and in-plane twisting moment Mt (Fig. 1).
5. Circularly symmetric deformations of the disk will only be considered. Possible loss of circular

symmetry in cylinders was considered by Skrzypek and ZÇyczkowski (1969), Storakers (1971), and in
disksÐby Tvergaard (1978), but such e�ects will be neglected. Cylindrical coordinates r, y, z will be
employed.

6. The decohesive carrying capacity of the disk will be de®ned by in®nite increase of radial strains er at
r � a; shearing strains gry will then increase in®nitely as well, whereas circumferential strains ey � 0 in
view of the boundary condition.

2. Governing equations in the elastic±plastic range

In view of circular symmetry of the disk, sij � sij�r�, the equations of internal equilibrium, valid both
in the elastic and in the plastic zone, take the form

dsr

dr
� sr ÿ sy

r
� 0, �1�

dtry

dr
� 2

try

r
� 0: �2�

The distribution of shearing stresses is statically internally determinate, namely, integrating (2) we obtain

try � Cy

r2
, �3�

where Cy is a constant. Calculating the in-plane twisting moment Mt we ®nd

Mt �
�2p
0

tryr
2 dy � 2pCy, �4�

and hence, in both zones,

try � Mt

2pr2
: �5�

For su�ciently small values of external loadings the whole disk is elastic and we arrive at the general
LameÂ 's solution with superposed torsion:

sr � A� B

r2
, sy � Aÿ B

r2
, �6�

ur � 1

E

�
�1ÿ v�Arÿ �1� v�B

r

�
, uy � Crÿ �1� v�Mt

2pEr
, �7�

er �
�1ÿ v�A

E
� �1� v�B

Er2
, ey �

�1ÿ v�A
E

ÿ �1� v�B
Er2

, gry �
�1� v�Mt

pEr2
: �8�

The boundary conditions
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sr�1� � p, ur�a� � 0, uy�a� � 0, �9�
yield

A � p, B � 1ÿ v

1� v
pa2, C � �1� v�Mt

2pEa2
: �10�

The HMH yield condition in the case under consideration has the form

s2r � s2y ÿ srsy � 3t2ry � s20, �11�
and substituting (5), (6) and (10) into this condition we obtain the equation of the elastic interaction
curve (boundary of the elastic range)

4
ÿ
1ÿ v� v2

�
�1� v�2

p2 � 3

4p2a4
M2

t � s20: �12�

If the loadings p and Mt exceed (12), in general a plastic zone a< r< r� will appear (except in the case
of an incompressible material, v � 1

2 , which will be discussed later). In the plastic zone we have three
equations (1), (2), and (11) for three unknown stress components sr, sy and try, and the problem seems
also to be internally statically determinate, but in view of the boundary conditions in displacements, (9),
the strains and displacements must be calculated anyway. But ®rst we can derive di�erential equation
for stresses, and then, separately, for strains and displacements. General solution for circularly
symmetric perfectly plastic states of disks was derived by ZÇyczkowski (1958) for arbitrary yield
condition, nonhomogeneity, thermal loading and body forces, but here, in view of the HMH yield
condition (11), we shall go some other, more convenient way. Namely, in view of (5), we parametrize
the yield condition as follows

sr � 2���
3
p

�����������������������
s20 ÿ

3M2
t

4p2r4

s
sin z,

sy � 2���
3
p

�����������������������
s20 ÿ

3M2
t

4p2r4

s
sin

�
z� p

3

�
, �13�

thus replacing two unknown stresses by one dimensionless parameter z, which is now determined by eqn
(1). The substitution (13) may be regarded as a generalization of the well-known Nadai±Sokolovsky
parametrization of the HMH yield condition. Related problems of elastic±plastic disks under combined
tension and in-plane torsion were initiated by Parasyuk (1948), Nordgren and Naghdi (1963), and
numerous references are given by ZÇyczkowski (1981), but none of those papers has considered
decohesive carrying capacity.

After some rearrangements we obtain for z the following ®rst-order di�erential equation

r
dz
dr

cos z� sin

�
zÿ p

3

�
� 6M2

t

4p2s20r
4 ÿ 3M2

t

� 0: �14�

It is seen that eqn (14) is singular for z � �p=2�, and just this case will be considered in detail. So, it is
more convenient to regard r as dependent, and z as independent variable. Moreover, for numerical
integration we introduce dimensionless quantities, and namely dimensionless twisting moment m and
dimensionless radius r,
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m � Mt

���
3
p

2ps0a2
, r � r

a
: �15�

The coe�cients are chosen in such a way as to ensure mE1, re1, since m � 1 corresponds not only
to elastic carrying capacity under pure torsion, as in (12), but also to maximal value of the moment
which may be transmitted by the elastic±perfectly plastic body under consideration. Eqn (14) will be
rewritten in the form

dr
dz
� F1�r, z�, �16�

where

F1�r, z� � ÿ
ÿ
r4 ÿm2

�
r cos zÿ

r4 ÿm2
�

sin

�
zÿ p

3

�
� 2m2

: �17�

The Hencky±Ilyushin deformation theory has the form

eij � jsij, �18�

where eij denote deviatoric strains, and sij deviatoric stresses, respectively, and j is the variable plastic
modulus to be determined. Combining (18) with compatibility equation

er � ey � r
dey
dr

, �19�

we ®nd for j the formula

j � r

sr ÿ sy

dey
dr
: �20�

Now, using once more eqn (18) combined with the law of volume change for mean strain em and sm,

em � 1ÿ 2v

E
sm, �21�

we derive the following equation for ey:

r
dey
dr
ÿ 3

sr ÿ sy
2sy ÿ sr

ey � 1ÿ 2v

E

s2r ÿ s2y
2sy ÿ sr

� 0: �22�

Though ey is dimensionless, it will be more convenient to introduce another dimensionless strain by
formula

~ey � E

s0
ey, �23�

since then the number of constants is reduced; ~e � 1 at the yield-point stress in uniaxial tension.
Regarding consistently z as independent variable we introduce the derivative d~ey=dz by using (16) and
(17). Finally, substituting (13) we obtain the equation in the following dimensionless form
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d~ey
dz
� F2

ÿ
r, z, ~ey

�
, �24�

where

F2

ÿ
r, z, ~ey

� �
ÿ
r4 ÿm2

� ���
3
p

sin

�
zÿ p

3

�
ÿ
r4 ÿm2

�
sin

�
zÿ p

3

�
� 2m2

"
2�1ÿ 2v�

3r2
cos

�
zÿ p

3

� ���������������������ÿ
r4 ÿm2

�q
ÿ ~ey

#
, �25�

and r � r�z� is determined by (16) and (17).
Numerical integration of (16) and (24) makes it possible to determine r, z and ~ey in the plastic zone

1< r< r�. Knowing these quantities we can evaluate the remaining unknowns. From (18) and (21) we
®nd

er � 1

2sy ÿ sr

�
�2sr ÿ sy�ey ÿ 1ÿ 2v

E

ÿ
s2r ÿ s2y

��
: �26�

Introducing ~e r and ~g ry by the formulae of the type (23) and substituting (13) we obtain

~e r � 1

cos z

"
~ey sin

�
zÿ p

6

�
� 1ÿ 2v

r2
���
3
p

�����������������
r4 ÿm2

p
cos

�
2zÿ p

6

�#
, �27�

jE � 1

cos z

"
3r2~ey

2
�����������������
r4 ÿm2

p ÿ �1ÿ 2v� sin

�
z� p

6

�#
, �28�

~g ry �
2jE
s0

try � m���
3
p

cos z

"
3~ey�����������������

r4 ÿm2
p ÿ 2�1ÿ 2v�

r2
sin

�
z� p

6

�#
: �29�

Radial displacements are determined simply by the formula ur � rey. Geometrical relation for
circumferential displacements can be written in the form

gry � r
d

dr

�
uy
r

�
, �30�

and hence, in dimensionless form,

~uy�def E

as0
uy � r

�r
1

~g ry� �r �
�r

d �r , �31�

where �r is the variable of integration, and the boundary condition ~uy�1� � 0 is already taken into
account. Of course, an integration over z can also be introduced via (16).

In order to obtain e�ective solution for an elastic±plastic disk under radial tension at in®nity p and
twisting moment Mt, we need eight boundary conditions besides that accounted in (31). Namely, we
need two boundary conditions to start integration of (16) and (24), and we have to evaluate six
constants: za corresponding to r � a or r � 1, radius of elastic±plastic interface r�, the corresponding
value of z denoted by z�, and three constants A, B, C in the general elastic solution (6) and (7). These
boundary conditions look as follows:
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at the rigid inclusion

~e �r�y �za � � 0, r�r��za � � 1, �32�
at the elastic±plastic interface

s�p�r �z�� � s�e�r �z��, t�p�ry �z�� � t�e�ry �z��,

u
�p�
r �z�� � u�e�r �z��, u

�p�
y �z�� � u

�e�
y �z��,

s�e�e �z�� � s0, or equivalently j�z�� � 1

2G
� 1� v

E
, �33�

and at in®nity

s�e�r �1� � p, �34�
where the superscripts (e) and (p) refer to the elastic and plastic zone, respectively, and se denotes the
HMH e�ective stress.

Formally, the initial conditions (32) make it possible to integrate numerically the eqns (16) and (24),
but, in the general elastic±plastic problem the value of the parameter za remains unknown. It should be
adjusted by `shooting' procedure in such a way as to obtain the prescribed value of the loading p (the
second loading m appears in the equations and should simply be substituted). So, ®rst we determine the
possible interval for za to facilitate the initial choice,

At the beginning of the elastic±plastic process (elastic carrying capacity) the stresses sr and sy at r � a
are determined simultaneously by eqns (6) with substituted (10) and by eqns (13):

2

1� v
p � 2���

3
p

�����������������������
s20 ÿ

3M2
t

4p2a4

s
sin za,

2v

1� v
p � 2���

3
p

�����������������������
s20 ÿ

3M2
t

4p2a4

s
sin

�
za �

p
3

�
: �35�

Dividing side by side we obtain

1

v
� 2 sin za

sin za �
���
3
p

cos za

, �36�

and ®nally

tan za � ÿ
���
3
p

1ÿ 2v
: �37�

Hence, for a compressible material, 0E v< 1=2, the parameter za starts from a value lying in the
interval p=2< za E 2p=3. It turns out that with increasing loadings this parameter decreases, but the
above interval holds for the whole elastic±plastic range.

Particular attention should be paid to the incompressible material, v � 1=2. Then the integral of (24)
with the condition (32) is simply ey � 0, and from (27) er � 0. This is in obvious contradiction with basic
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assumptions of plastic deformations, hence the plastic zone cannot develop and the elastic carrying
capacity (12) terminates the process.

From the condition (34) we obtain simply A � p, and the second of the conditions (33) is satis®ed
automatically in view of (5) valid in both zones. The remaining four continuity conditions will be
written in the dimensionless form

2���
3
p

����������������
1ÿ m2

r�4

s
sin z� � q� B

s0a2r�2
, �38�

~e��p�y � �1ÿ v�qÿ �1� v�B
s0a2r�2

, �39�

r�
�r�
1

~g �p�ry � �r �
�r

d �r � CE

s0
r� ÿ �1� v�m���

3
p

r�
, �40�

q2 � 3
B2

s20a
4r�4
� m2

r�4
� 1, �41�

where q � p=s0 denotes dimensionless radial loading. Condition (40) determines directly the constant C,
whereas (38), (39) and (41) determine B and q and give a relation between ~e��p�y , z� and r� which
determines the elastic±plastic interface, it means the end-point of numerical integration of (16) and (24).
Substituting B evaluated from (38) into (41) we obtain a quadratic equation for q with the roots

q �
����������������
1ÿ m2

r�4

s � ���
3
p

2
sin z�2

1

2
cos z�

�
: �42�

Considering continuity of solutions at the elastic carrying capacity, z� � za, we ®nd that in (42) upper
sign should be taken, and we rewrite this formula as follows

q �
����������������
1ÿ m2

r�4

s
cos

�
z� ÿ p

3

�
: �43�

This is a direct generalization of the formula derived by Szuwalski and ZÇyczkowski (1973) for the case
m � 0. We further obtain

B

s0a2r�2
�

����������������
1ÿ m2

r�4

s �
1

2
���
3
p sin z� ÿ 1

2
cos z�

�
, �44�

~e��p�y �
����������������
1ÿ m2

r�4

s �
1ÿ 2v���

3
p sin z� � cos z�

�
: �45�

So, eqns (16) and (24) should be integrated numerically up to the value z � z� at which (45) is
satis®ed, and then q is determined by (43). The unknown parameter za should then be chosen so as to
obtain for q the prescribed value of external loading.
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3. Decohesive carrying capacity

In the elastic±plastic range the value of the parameter za starts from that given by (37) and then it
decreases. The deformation process terminates if za approaches p=2: indeed, then at the clamped
boundary er 41, j 41, gry 41 and the process cannot be continued. According to the de®nition
adopted, the decohesive carrying capacity of the disk is then exhausted.

Numerical evaluation of the DCC is even simpler than the elastic±plastic analysis. The initial
conditions at the rigid inclusion, (32), now take the form

~e �p�y �p=2� � 0, r�p��p=2� � 1, �46�

and numerical integration of (16) and (24) for a given value of m, m < 1, starts without any unknown
parameter. It goes up to the point z � z� at which (45) is satis®ed. Then also r� is determined and (43)
gives directly the value of q, denoted here by qÃ.

Interaction curves in the plane mÿ q, corresponding to decohesive carrying capacity of the disk under
consideration, depend essentially on Poisson's ratio v, it means on the compressibility of the material.
They are shown in Fig. 2. for various values of v. They are convex; this is rather an exception, since in
many cases interaction curves corresponding to DCC exhibit concavities, Szuwalski and ZÇyczkowski
(1984), Skrzypek and Muc (1988), Bielski and Skrzypek (1989), ZÇyczkowski et al. (1992), ZÇyczkowski
and Tran (1997).

The di�erence between the interaction curves corresponding to elastic carrying capacity and DCC

Fig. 2. Interaction curves corresponding to decohesive carrying capacity.
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Fig. 3. Ranges of deformation for v � 0.

Fig. 4. Ranges for deformation for v � 0:3.
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depends also on v. Figs. 3 and 4 show both curves for v � 0 and v � 0:3, whereas for v � 0:5 both these
curves coincide and the elastic±plastic range vanishes. Moreover, Fig. 5 gives the relations r� � r��m�
and z� � z��m� for v � 0 and the DCC curve making it possible to evaluate also r� � r��q� and
z� � z��q�.

In order to analyze the order of singularity of ~e r at DCC we expand the solutions of (16) and (24) in
the vicinity of z � p=2, r � 1, ~ey � 0 into generalized power series, and then perform suitable operations
as to obtain the series ~e r � ~e r�r�, ZÇyczkowski (1965), Feldmar and KoÈ lbig (1986). First we introduce
new variables which are small in the vicinity of the singular point:

a � rÿ 1, b � zÿ p
2

�47�

Introducing them into (16) and (17), expanding a � a�b� into power series and equating coe�cients of
consecutive powers of b at both sides we obtain

a � 1ÿm2

1� 3m2
b2 ÿ 2���

3
p �1ÿm2�2
�1� 3m2�2b

3 � � � � : �48�

Further, introducing (47) and (48) into (24) and (25) we obtain in similar manner

~ey � 1ÿ 2v

1� 3m2
�1ÿm2�3=2bÿ 2�1ÿ 2v��1ÿ 3m2��1ÿm2�3=2���

3
p �1� 3m2 �2 b2 � � � � : �49�

In order to obtain ~ey � ~ey�a� we have to invert the series (48):

Fig. 5. Dependence of r� and z� in terms of m and q for v � 0.
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b �
������������������
1� 3m2

1ÿm2

s
a1=2 �

���
3
p

3
a� � � � , �50�

and substitute it into (49)

~ey �
�1ÿ 2v��1ÿm2������������������

1� 3m2
p a1=2 ÿ �1ÿ 2v��1ÿ 5m2� ��������������

1ÿm2
p���

3
p �1� 3m2� a� � � � : �51�

Finally, from the compatibility condition (19) we obtain

~e r �
�1ÿ 2v��1ÿm2 �

2
�����������������
1� 3m2
p aÿ1=2 ÿ �1ÿ 2v��1ÿ 5m2 � ��������������

1ÿm2
p���

3
p �1� 3m2 � � � � � : �52�

Hence, in physical quantities, the strain ~e r for r � a at decohesion tends to in®nity as �rÿ a�ÿ1=2.
Expanding in a similar way the formula (29) we obtain

~g ry � �1ÿ 2v�m
������������������
1ÿm2

1� 3m2

s
aÿ1=2 ÿ �1ÿ 2v�m�5ÿm2 ����

3
p �1� 3m2� � � � � �53�

and for any non-vanishing torsion 0<m< 1 and v 6� 1=2 this strain also increases in®nitely like ~e r.
A diagram of stress and strain distribution in the disk at the moment of decohesion is shown in Fig. 6

Fig. 6. Stress and strain distribution for m � 0:5514, p � 0:5175, v � 0.
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for m=0.5514, p=0.5175 and v=0; this value of v results in the largest possible plastic zone and hence
the diagrams are representative.

Finally, we give a comparison of the direction of decohesion analyzed in the present paper with that
of discontinuous bifurcation derived by Runesson et al. (1991). From the Mohr's circle for plane stress
we ®nd

tan 2cn1 �
2try

sr ÿ sy
, �54�

where cn1 is the angle of inclination of the normal to the direction of decohesion with respect to
principal direction `1'. Substituting into (54)

sr � 2���
3
p s0

��������������
1ÿm2
p

, sy � 1���
3
p s0

��������������
1ÿm2
p

, try � 1���
3
p s0m, �55�

we obtain

tan 2cn1 �
2m��������������
1ÿm2
p : �56�

The same formula may be obtained from the analysis of strains, namely, if we calculate the limit of
~g ry=~e r for a4 0.
On the other hand, Runesson et al. (1991) derived the following formula for the direction of

discontinuous bifurcation at plane stress:

tan 2cn2 � ÿ
2sI ÿ sII

2sII ÿ sI

, �57�

where sI and sII are algebraically ordered principal stresses,

sI,II � 1
2�sr � sy �21

2

��������������������������������
�sr ÿ sy�2 � 4t2

q
�58�

and cn2 denotes the angle between the normal to the direction of decohesion and principal direction `2',
cn2 � �p=2� ÿ cn1.

Substituting (55) and (58) into (57) we ®nd

tan 2cn2 �
�����������������
1� 3m2
p �

��������������
1ÿm2
p�����������������

1� 3m2
p ÿ

��������������
1ÿm2
p �

ÿ �����������������
1� 3m2
p �

��������������
1ÿm2
p �2

4m2
, �59�

hence we obtain a simple formula for tan cn2, and calculating tan 2cn2 we arrive at

tan 2cn2 � ÿ
2m��������������
1ÿm2
p : �60�

In view of the relation between cn1 and cn2 we ®nd (56) and (60) in agreement.
So, in the case under consideration the directions of discontinuous bifurcation and of decohesion

coincide. This result is by no means obvious, since the ®rst (57) was derived under the assumption of
uniform stress state, whereas the second, (54), for nonuniform stress state in the disk considered. For
example, in slightly nonprismatic bars under simple tension such a coincidence does not take place.
Hence, the coincidence of the results of (54) and (57) gives an additional argument for close relation
between discontinuous bifurcation and decohesion, as was noticed by Schreyer and Zhou (1995).
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4. Conclusions

1. The process of elastic±perfectly plastic deformations in a disk with rigid inclusion, subject to
simultaneous radial tension and in-plane torsion, terminates with decohesive carrying capacity. After
decohesion the disk is no longer in equilibrium, since the twisting moment cannot be equilibrated.

2. The decohesive carrying capacity depends essentially on Poisson's ratio v. For an incompressible
material v � 1=2, the plastic zone cannot be developed and DCC coincides with elastic carrying
capacity.

3. At the moment of decohesion radial strains er increase in®nitely, and the type of singularity is
described by the function �rÿ a�ÿ1=2. Just for an incompressible material or pure torsion this
expansion does not hold and we observe immediate collapse.

4. In the case under consideration the directions of discontinuous bifurcation and of decohesion
coincide.
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